Documentation

RadiiPolynomial.TaylorODE.ScaledReal

Main definitions #

Positive Reals #

@[reducible, inline]
abbrev PosReal :

Positive real numbers asx a subtype

Equations
Instances For
    @[simp]
    theorem PosReal.coe_pos (ν : PosReal) :
    0 < ν
    @[simp]
    theorem PosReal.coe_nonneg (ν : PosReal) :
    0 ν
    @[simp]
    theorem PosReal.coe_ne_zero (ν : PosReal) :
    ν 0
    Equations
    Instances For

      Scaled Real Numbers #

      ScaledReal ν n is ℝ with norm ‖x‖ = |x| · νⁿ.

      The parameters ν and n are not used in the definition (which is just ℝ), but they create distinct types with different Norm instances via inferInstanceAs. This allows lp (ScaledReal ν) 1 to compute the weighted norm Σₙ |aₙ| νⁿ automatically.

      def ScaledReal ( : PosReal) (_n : ) :

      ℝ with scaled norm at index n: ‖x‖ = |x| · νⁿ

      Equations
      Instances For

        Borrow algebraic instances from ℝ

        Equations
        def ScaledReal.toReal {ν : PosReal} {n : } (x : ScaledReal ν n) :

        Cast to ℝ (identity map)

        Equations
        • x = x
        Instances For

          Coercion from ScaledReal to ℝ. This is the identity since ScaledReal is definitionally ℝ.

          Equations
          instance ScaledReal.instNorm {ν : PosReal} {n : } :

          The instance of type Norm for ScaledReal: ‖x‖ = |x| · νⁿ

          Equations
          theorem ScaledReal.norm_def {ν : PosReal} {n : } (x : ScaledReal ν n) :
          x = |x| * ν ^ n
          theorem ScaledReal.norm_nonneg' {ν : PosReal} {n : } (x : ScaledReal ν n) :
          @[simp]
          theorem ScaledReal.norm_zero' {ν : PosReal} {n : } :
          @[simp]
          theorem ScaledReal.norm_neg' {ν : PosReal} {n : } (x : ScaledReal ν n) :
          theorem ScaledReal.norm_add_le' {ν : PosReal} {n : } (x y : ScaledReal ν n) :
          theorem ScaledReal.norm_smul' {ν : PosReal} {n : } (c : ) (x : ScaledReal ν n) :
          theorem ScaledReal.norm_eq_zero' {ν : PosReal} {n : } (x : ScaledReal ν n) :
          x = 0 x = 0

          ScaledReal ν n is a normed abelian group.

          This instance establishes that ScaledReal ν n is a metric space where the distance is induced by the norm: d(x, y) = ‖x - y‖.

          Required properties:

          This is a prerequisite for NormedSpace and enables the use of ScaledReal in Mathlib's lp space construction.

          Equations
          • One or more equations did not get rendered due to their size.

          ScaledReal ν n is a normed vector space over ℝ.

          This instance proves that scalar multiplication is compatible with the norm: ‖c • x‖ = |c| · ‖x‖

          Together with instNormedAddCommGroup, this makes ScaledReal ν n a normed space, enabling:

          • Use as fiber type in lp (ScaledReal ν) p for weighted ℓᵖ spaces
          • Completeness (Banach space structure inherited from ℝ)
          • Continuous linear maps and Fréchet derivatives
          • Integration with Mathlib's analysis library
          Equations

          ScaledReal ν n is finite-dimensional over ℝ since it is just ℝ with a rescaled norm.

          Completeness of ScaledReal ν n, inherited from finite dimensionality.

          Additive isomorphism from ℝ to ScaledReal

          Equations
          Instances For
            @[simp]
            theorem ScaledReal.toReal_apply {ν : PosReal} {n : } (x : ScaledReal ν n) :
            x = x
            @[simp]
            theorem ScaledReal.ofReal_apply {ν : PosReal} {n : } (x : ) :
            ofReal x = x
            @[simp]
            theorem ScaledReal.coe_zero {ν : PosReal} {n : } :
            0 = 0
            @[simp]
            theorem ScaledReal.coe_one {ν : PosReal} {n : } :
            1 = 1
            @[simp]
            theorem ScaledReal.coe_add {ν : PosReal} {n : } (x y : ScaledReal ν n) :
            x + y = x + y
            @[simp]
            theorem ScaledReal.coe_sub {ν : PosReal} {n : } (x y : ScaledReal ν n) :
            x - y = x - y
            @[simp]
            theorem ScaledReal.coe_neg {ν : PosReal} {n : } (x : ScaledReal ν n) :
            -x = -x
            @[simp]
            theorem ScaledReal.coe_mul {ν : PosReal} {n : } (x y : ScaledReal ν n) :
            x * y = x * y